Supported by EU FP7 eInfrastructure, contract 283610 EarthServer

Open Source Park, INTERGEO 2013

Peter Baumann

Jacobs University | rasdaman GmbH

EarthServer :: INTERGEO Open-Source Park :: ©20123 P. Baumann

A Bit of OGC: Features & Coverages

- The basis of all: geographic feature
 - = abstraction of a real world phenomenon [OGC, ISO]
 - associated with a location relative to Earth
- Special kind of feature: coverage
 space-time varying multi-dimensional phenomenon Classic: 2-D raster image
 - •...but there is more!
- Often Big Geo Data are coverages

Web Coverage Service (WCS)

- Core: Simple & efficient access to n-D spatio-temporal coverages
 - plus format encoding

- Extensions add functionality facets
 - Scaling, CRS transformation, ... up to ad-hoc analytics

EarthServer :: INTERGEO Open-Source Park :: ©20123 P. Baumann

EarthServer: Big Earth Data Analytics

- Scalable On-Demand Processing for the Earth Sciences
 - EU FP7-INFRA, 3 years, 5.85 mEUR
- 100+ TB databases for Earth & Planetary sciences
 - Platform: rasdaman; strictly open standards interfaces (OGC, W3C, X3D)

rasdama

raster data management

- = Array DBMS for massive n-D raster data
 - SQL + imaging operators
 select img.green[x0:x1,y0:y1] > 130
 from LandsatArchive as img
 where avg cells(img.nir) < 17</pre>
- Flexibility ← query language
- Scalability ← "tile streaming" architecture, parallelization
- In use by DWD, VITO/BE, ...

www.rasdaman.org

EarthServer Anatomy

RTD Activity: establish & extend operational service software

Lead: Jacobs Uni

Services Activity: establish 6 operational Lighthouse Applications

- Lead: EOX
- Networking Activity: outreach, standardization
 - Lead: CNR

WP320: Coverage Services

- Jacobs Uni, rasdaman, CNR, BGS
- WCS 2.0 service components (JacobsUni)
 - Done: WCS Core, protocols (KVP, POX, SOAP), range subsetting, CRS, ... plus manifold fixes & additions to rasdaman
 - TBD: WCS-T 2.0, WCPS 2.0; REST
- Extend WCPS to nonuniform grids (JacobsUni, RAS)
 - Done: nonuniform grids in WCS

- Extend WCPS to nongridded data (JacobsUni, RAS)
 - Done: point clouds in WCS
- Harmonize NetCDF and WCS/WCPS wrt. new coverage types (CNR-IIA)

WP330: QL Integration Data/Metadata

- ATHENA, Jacobs Uni
- WCPS 2.0 = WCPS + XQuery
 - Most metadata in XML XPath/XQuery natural choice
- Advantages:
 - Convenience: integrated data + metadata search
 - Performance: less ping-pong between client and server(s)
- Implementation:
 - eXist + rasdaman

WP340: GIS Integration

EOX

- MapServer accessing rasdaman as data source
- GDAL accessing rasdaman as data source
- Integration of existing archives
 - Traditionally: data imported into database
 - Problem: Large-scale data centers sometimes object to copying
 - Approach: reference external files, use as tiles

WP350: Scalability

[data courtesy BGS, ESA]

WP360: 3D Database Visualization

Fraunhofer IGD, Jacobs Uni, COMETA Mobile WCS client, plus... select encode (struct { (char) s.b7[x0:x1,x0:x1],red: (char) s.b5[x0:x1,x0:x1],green: blue: (char) s.b0[x0:x1,x0:x1], alpha: (char) scale(d, 20) }, "png" from SatImage as s, DEM as d

[JacobsU, Fraunhofer 2012]

Ex: Climate Data Service, MEEO

[MEEO 2013]

Ex: Plymouth Marine Laboratory

EarthServer :: INTERGEO Open-Source Park :: ©20123 P. Baumann 16

[PML 2013]

Ex: British Geological Service

[BGS 2013]

EarthServer :: INTERGEO Open-Source Park :: ©20123 P. Baumann 17

Conclusion

- EarthServer establishing on-demand mix&match of Big Earth Data
 - Transatlantic only FP7 project with NASA on board
 - Significant impact on standards
- rasdaman: flexibility, scalability, information integration, open source
 - GEOSS key component

